ECE 600: Introduction to Shape Analysis

Lab #4 – Convex Hull in 2D

(Assigned Thursday 6/11/09 – Due Thursday 6/18/09)

In this lab, we will discuss the details of computing convex hull using Graham's algorithm, refer to lecture notes for more theoretical details. We start with data structures, then tackle the sorting step, and finally present the code.

Table of Contents

Table of Code Snippets .. 1
1. Data Representation .. 3
2. Sorting .. 6
 2.1 FindLowest. ... 6
 2.2 Sorting Relation ... 7
 2.3 Slopes .. 7
 2.4 Using Left Predicate ... 8
 2.5 Compare ... 8
 2.6 QuickSort ... 10
3. Graham Algorithm .. 14
 Task 12: ... 18

Table of Code Snippets

Code 1 - Vertex2D class after modification to compute the convex hull... 3
Code 2 – Stack functions added Vertex2D class .. 5
Code 3 – Example how to use stack data structure.. 5
Code 4 - FindLowest function .. 6
ECE 600: Introduction to Shape Analysis

Lab #4 – Convex Hull in 2D

Code 5 – Swap function ..6
Code 6 - Compare function ...8
Code 7 - QuickSort function ...13
Code 8 - Partition function, Version 2 ...14
1. Data Representation

As usual, we have a choice between storing the points in an array or a list. We choose in this instance to use an array, anticipating using a sorting routine that expects its data in a contiguous section of memory. Each point will be represented by a structure paralleling that used for vertices in polygon triangulation lab, i.e. Vertex2D, however it will be modified to serve the purpose of convex hull computation.

The points are stored in an array (rather than a linked list) called P with P(1),P(1),...,P(n) corresponding to \(p_0, p_1, \ldots, p_{n-1} \), note that Matlab arrays are one-based indexed. Each P(i) is a structure with fields for its coordinates, a unique identifying number, vertexID, and a flag to mark deletion, isDeleted, such member will be added to the Vertex2D class.

Thus, we are given an array of points P, where P(i) is of type Vertex2D, and optimally we are required to extract from them the following:

1. All points on the hull in arbitrary order (array of points subset of P can be used)
2. The extreme points in arbitrary order (array of points subset of P can be used)
3. All the points on the hull in boundary traversal order (a linked list containing such)
4. The extreme points in boundary traversal order

Where an array of points which is subset of P is sufficient to represent the first two outputs, while a linked list structure can be used to represented the last two outputs to maintain the boundary traversal order. See Code 1 to see the modification done for Vertex2D class.

Code 1 - Vertex2D class after modification to compute the convex hull

```matlab
classdef Vertex2D < handle
    % in this class we will define the basic building block of a polygon
    properties
        vertexID % index or id number assigned to the current vertex
            % which reveals its order within the polygon
        point % point coordinates for this vertex

        % members used for polygon triangulation, i.e. if Vertex2D is
        % used as a linked list of vertices to define the
        % boundary of a polygon
        isEar % ear status, true if this vertex is an ear
        isAdded = 0 % a flag to indicate whether this vertex is
            % added to the vertex list of the polygon or not
        index_in_vertexList = 0;

        % members used for convex hull computation (Graham's Algorithm)
        isDeleted % a flag which mark point deletion

        % members used to used Vertex2D as a node in either a linked list
        % or a stack
```
Now, throughout the computation of the convex hull of the given set of points P, we need to maintain a stack of so-far added points to the convex hull boundary. In Lab 3 we have implemented Vertex2D as a doubly linked list to represent a polygon, however to compute the convex hull, we need to view it as a stack, hence we will add some functionalities on Vertex2D class to enable using it as a node in a stack.

Conceptually, a stack is simple: a data structure that allows adding and removing elements in a particular order. Every time an element is added, it goes on the top of the stack; the only element that can be removed is the element that was at the top of the stack. Consequently, a stack is said to have "first in last out" behavior (or "last in, first out"). The first item added to a stack will be the last item removed from a stack.

Stacks have some useful terminology associated with them:

1. **Push** To add an element to the stack, such element will be the head/top of the stack, hence this addition can be thought of inserting a node at the end of a linked list.
2. **Pop** To remove an element from the stack, this element is the last one, hence moving the head/top of the stack one step down, thus this removal can be thought of deleting the last node from a linked list.
3. **Peek** To look at (traverse) elements in the stack without removing them
4. **LIFO** Refers to the last in, first out behavior of the stack
5. **FILO** Equivalent to LIFO

Thus, the stack is most naturally represented by a singly linked list of cells, each of which "contains" a vertex, such that we always have the access to the top of the stack which is the last element being pushed in such a single linked list. See Code 2 for the functions added to Vertex2D class to allowing the implementation of stack functions.
%% functions related to stack implementation
function stackTop = Push(stackTop,newNode)
 newNode.insertAfter(stackTop);
 stackTop = newNode;
end

function [stackTop, popedNode] = Pop(stackTop)
 popedNode = Vertex2D(stackTop.vertexID,stackTop.point);
 stackTop = stackTop.prev;
 stackTop.next = [];
end

function Peek(stackTop)
 % loop backward from the stacktop till the first element being
 % pushed and display node info
 while(1)
 disp(stackTop);
 % termination condition
 if isempty(stackTop.prev)
 break
 end
 stackTop = stackTop.prev;
 end
end

See Code 3 for an example how to use the stack

Code 3 – Example how to use stack data structure

% test stack
x = [0 10 12 20 13 10 12 14 8 6 10 7 0 1 3 5 -2 5];
y = [0 7 3 8 17 12 14 9 10 14 15 16 13 15 8 9 5];

% let's fill a stack of vertices for the previous coordinates
starting_point = Point2D(x(1),y(1));
stackTop = Vertex2D(0,starting_point);
for i = 2 : length(x)
 curPoint = Point2D(x(i),y(i));
 curVertex = Vertex2D(i-1,curPoint);
 stackTop = stackTop.Push(curVertex);
end

% go over the stack element and display node information without removing
% them
stackTop.Peek();
2. Sorting

2.1 FindLowest.

We first start with the easiest aspect of the sorting step: finding the rightmost lowest point in the set. The function FindLowest (Code 4) accomplishes this and swaps the point into $P(1)$ (note that Matlab arrays are one-based indexed). The straightforward Swap is shown in Code 5. Note that these functions are utility functions hence they are not included in any class definition.

Code 4 - FindLowest function

```matlab
function P = FindLowest(P)
    % this function finds the rightmost lowest point in a given array of vertices
each of type Vertex2D.
% this function accomplishes this and swaps the point into P(0).
    lowestIndex = 1;
    lowestPoint = P(lowestIndex).point;
    for i = 2 : length(P)
        curPoint = P(i).point;
        if (curPoint.y < lowestPoint.y) || ...
            ((curPoint.y == lowestPoint.y)&&(curPoint.x > lowestPoint.x))
            lowestIndex = i;
            lowestPoint = P(lowestIndex).point;
        end
    end
    P = Swap(P,1,lowestIndex);
end
```

Code 5 – Swap function

```matlab
function P = Swap(P,i,j)
    % this function will swap array element at index i with array element at
% index j and return the array P after swap has been occurred
    tempElement = P(i);
    P(i) = P(j);
    P(j) = tempElement;
end
```
2.2 Sorting Relation

The sorting step seems straightforward, but there are hidden pitfalls if we want to guarantee an accurate sort. First we introduce a bit of notation. Let \(r_i = p_i - p_0 \), the vector from \(p_0 \) to \(p_i \). Our goal is to give a precise calculation to determine when \(p_i < p_j \), where "<" represents the sorting relation.

![Figure 1 – Notation for sorting angle](image)

The obvious choice is to define \(p_i < p_j \) if \(\text{angle}(r_i) < \text{angle}(r_j) \) where \(\text{angle}(r) \) is the counterclockwise angle of \(r \) from the positive \(x \)-axis. See Figure 1. (We will discuss tie breaking later.) Since \(p_0 \) is lowest, all these angles are in the range \((0, \pi] \), which is convenient because sorting positive and negative angles can be tricky. We can use Matlab function called \(\text{atan2} \) to compute this angle, however there are at least two reasons not to use this:

1. There is no guarantee that the arctangent computation is itself accurate for our purposes.
2. The arctangent is a complicated, expensive function - slopes are simpler and serve the same purpose.

2.3 Slopes

For \(r \) in the first quadrant (i.e., both coordinates positive), the slope \(\frac{r_y}{r_x} \) can substitute for the arctangent, and in the second quadrant, we could use \(-\frac{r_y}{r_x} \). Although this sounds simpler than invoking \(\text{atan2} \), this approach suffers from several of the same weaknesses. Let's see an example.

Clearly if \(r_i = cr_j \), where \(c \) is some positive number, then we want to conclude that \(\text{angle}(r_i) = \text{angle}(r_j) \), and then fall into our tie-breaking code. If we are using slopes, this amounts to requiring that \(\frac{a}{b} = \frac{(ca)}{(cb)} \), which is of course true mathematically. However this equality is not
guaranteed to hold for floating-point division. It depends on the machine. Some machines perform division by reciprocating and multiplying, and the two operations sometimes lead to small errors.

2.4 Using Left Predicate

The solution is already in hand: the Left predicate, the function to determine whether a point is left of a line determined by two other points, is precisely what we need to compare r_i and r_j.

Recall that Left was itself a simple test on the value of getTriangleArea, which computes the signed area of the triangle determined by three points. We will use this area function rather than Left, as it is then easier to distinguish ties.

2.5 Compare

Now, given two points, p_i and p_j, we want to compare them, i.e. $p_i < p_j$? with respect to p_0. If p_j is on the left of the directed line $p_0 p_i$, then $p_i < p_j$, i.e. $p_i < p_j$ if $area(p_0, p_i, p_j) > 0$, hence -1 is returned to indicate less than. When the area is zero, we fall into a sorting collinearity. To decide which point is closer to p_0, we can avoid computing the distance by noting that if p_i is closer, then $r_i = p_i - p_0$ projects to a shorter length than does $r_j = p_j - p_0$. If p_i is closer, we mark it for later deletion, if p_j is closer, mark it instead. If $p_i = p_j$ then we mark the one with lower index for later deletion (which one we choose to delete does not matter, however consistency is needed). In all cases, either -1, 0 or 1 is returned according to the angular sorting rule. For implementation issues, it was found that it is preferred to separate the comparison code (Code 6) from the part related to marking a point for deletion (Code 7), where the later is called after sorting the vertices.

Code 6 - Compare function

```
function decision = compare(p0,pi,pj)

% this function compares pi and pj with respect to p0 using the angular
% sorting rule

% getting the area of the triangle of vertices po,pi and pj
A = area(p0,pi,pj);

if A > 0
    decision = -1; % less than
else if A < 0
    decision = 1; % greater than
else
    % points are collinear with p0
    % compute the projections of ri = pi-po and rj = pj-po
    x = abs(pi.point.x - p0.point.x) - abs(pj.point.x - p0.point.x);
    y = abs(pi.point.y - p0.point.y) - abs(pj.point.y - p0.point.y);
    if (x<0) || (y<0)
```
decision = -1;
else if (x>0) || (y>0)
 decision = 1;
else
 % points are coincident
decision = 0;
end
end
end

Code 7 - markDeletion function

function P = markDeletion(P)

% this function indicate whether each vertex in the array P should be
% deleted or not (this is after sorting)

p0 = P(1);
for i = 2 : length(P)-1
 pi = P(i);
 pj = P(i+1);
 % getting the area of the triangle of vertices po,pi and pj
 A = area(p0,pi,pj);
 if A == 0
 % points are collinear with p0
 % compute the projections of ri = pi-po and rj = pj-po
 x = abs(pi.point.x - p0.point.x) - abs(pj.point.x - p0.point.x);
 y = abs(pi.point.y - p0.point.y) - abs(pj.point.y - p0.point.y);
 if (x<0)||(y<0)
 P(i).isDeleted = 1;
 else if (x>0) || (y>0)
 P(i+1).isDeleted = 1;
 else
 % points are coincident
 if pi.vertexID > pj.vertexID
 P(i+1).isDeleted = 1;
 else
 P(i).isDeleted = 1;
 end
 end
 end
end
end

Now, we will discuss the overall sorting method which employs the compare function.
2.6 QuickSort

QuickSort is a well-known sorting algorithm that on average makes $O(n \log n)$ comparisons to sort n elements. However, in the worst case, it makes $O(n^2)$ comparisons. Quicksort sorts by employing a divide and conquer strategy to divide a list into two sub-lists.

The steps are:

1. Pick an element, called a pivot, from the list.
2. Reorder the list so that all elements which are less than the pivot come before the pivot and all elements greater than the pivot come after it (equal values can go either way). After this partitioning, the pivot is in its final position. This is called the partition operation.
3. Recursively sort the sub-list of lesser elements and the sub-list of greater elements.

The base case of the recursion is lists of size zero or one, which are always sorted.

Algorithm: QuickSort

```
function quicksort(array)
    variables: less, greater
    if length(array) ≤ 1
        return array
    Select and remove a pivot value pivot from array
    for each x in array
        if x ≤ pivot then append x to less
        else append x to greater
    return concatenate(quicksort(less), pivot, quicksort(greater))
```

The disadvantage of the simple version above is that it requires $\Omega(n)$ extra storage space. The additional memory allocations required can also drastically impact speed and cache performance in practical implementations. There is a more complex version which uses an in-place partition algorithm and can achieve the complete sort using $O(n\log n)$ space use on average:

Algorithm: Partition

```java
function partition(array, left, right, pivotIndex)
    pivotValue = array[pivotIndex]
    swap array[pivotIndex] and array[right] // Move pivot to end
    storeIndex = left
    for i = left to right - 1
        if array[i] < pivotValue
            swap array[i] and array[storeIndex++]
    swap array[right] and array[storeIndex]
    return storeIndex
```

Figure 2 - Full example of quicksort on a random set of numbers. The boxed element is the pivot. It is always chosen as the last element of the partition. (Courtesy of Wikipedia)
for i from $left$ to $right - 1$
 if $array[i] \leq pivotValue$
 swap $array[i]$ and $array[storeIndex]$
 $storeIndex = storeIndex + 1$
 swap $array[storeIndex]$ and $array[right]$ // Move pivot to its final place
return $storeIndex$

This is the in-place partition algorithm. It partitions the portion of the array between indexes $left$ and $right$, inclusively, by moving all elements less than or equal to $array[pivotIndex]$ to the beginning of the subarray, leaving all the greater elements following them. In the process it also finds the final position for the pivot element, which it returns. It temporarily moves the pivot element to the end of the subarray, so that it doesn't get in the way. Because it only uses exchanges, the final list has the same elements as the original list. Notice that an element may be exchanged multiple times before reaching its final place.

Figure 3 - In-place partition in action on a small list. The boxed element is the pivot element, blue elements are less or equal, and red elements are larger. (Courtesy of Wikipedia)

Once we have this, writing quicksort itself is easy:

Algorithm: QuickSort, Version 2
function quicksort(array, left, right)
 if right > left
 select a pivot index (e.g. pivotIndex = left)
 pivotNewIndex = partition(array, left, right, pivotIndex)
 quicksort(array, left, pivotNewIndex - 1)
 quicksort(array, pivotNewIndex + 1, right)
 end
end

See Code 8 for the direct implementation of the preceding algorithm to quicksort an array of numbers.

Code 8 - QuickSort function

function P = quicksort(P,leftIndex,rightIndex)
 % this function will sort the given array of vertices (with P(1) being the % rightmost lowest point) according to the angle compute counterclockwise, % this function will use the compare function implemented to compare pi % with pj with respect to p0, which uses the area function instead of % actually find such counterclockwise angle which is error prone.
 if leftIndex >= rightIndex
 return
 end

 [P,index] = partition(P,leftIndex,rightIndex);
 P = quicksort(P,leftIndex,index-1);
 P = quicksort(P,index+1,rightIndex);
end

function [P,index] = partition(P,leftIndex,rightIndex)
 % Partition the array into two halves and return the % index about which the array is partitioned
 % Makes the leftmost element a good pivot
 pivotIndex = leftIndex;
 pivotValue = P(pivotIndex);
 index = leftIndex;

 P = Swap(P,pivotIndex,rightIndex);
 for i = leftIndex : rightIndex
 if P(i) < pivotValue
 P = Swap(P,i,index);
 index = index + 1;
 end
 end

 P = Swap(P,rightIndex,index);
end
Now, we will adapt the preceding code in order to sort an array of given vertices according to the counterclockwise angle with respect to the rightmost lowest point. See Code 9. Note that the only part which needs modification is the partition function where comparisons take place.

Code 9 - Partition function, Version 2

```matlab
function [P,index] = partition(P,leftIndex,rightIndex)
% Partition the array into two halves and return the index about which the array is partitioned

% Makes the leftmost element a good pivot
pivotIndex = leftIndex;
pivotValue = P(pivotIndex);
index = leftIndex;

p0 = P(1);
pj = P(pivotIndex);
P = Swap(P,pivotIndex,rightIndex);
for i = leftIndex : rightIndex
    pi = P(i);
    decision = compare(p0,pi,pj);
    if decision == -1
        P = Swap(P,i,index);
        index = index + 1;
    end
end
P = Swap(P,rightIndex,index);
```

3. Graham Algorithm

Having worked out the sorting details, let us move to the top level and discuss the main functionality of extreme points computation (Code 12). The points are read in, the rightmost lowest is swapped with P(1) in FindLowest, and P(2) ..., P(n) are sorted by angle with quicksort. The repeated calls to the compare function mark a number of points for deletion by setting the flag isDeleted field. The next (easy) task is to delete those points, which we accomplish with a simple function called Squash (Code 10). This maintains two indices i and j into the points array P, copying P(i) on top of P(j) for all undeleted points i. After this the most problematic cases are gone and we can proceed with the Graham scan (Code 11)

Code 10 - Squash function

```matlab
function newP = Squash(P)
% this function returns those points which are not marked for deletion
% ignoring the rest
n = length(P);
```
Recall the Graham scan algorithm, which can be summarized using the following pseudocode;

Algorithm: Graham Scan, Version B

Find rightmost lowest point, label it as p_0
Sort all other points angularly about p_0,
 In case of tie, delete the point closer to p_0 (or all but one copy for multiple points)
Stack $S = (p_1, p_0) = (p_t, p_{t-1})$; t indexes the top of the stack
Set $i \leftarrow 2$
While $i < n$ do
 If p_i is strictly left of (p_{t-1}, p_t)
 Then Push (p_i, S) and set $i \leftarrow i + 1$
 Else Pop(S)

Code 11 - Graham function

```matlab
function stackTop = Graham(P)
    % this function finds the convex hull points of a given array of
    % vertices/points in the boundary traversal order (counterclockwise)
    % the convex hull is a stack of vertices whose top is returned by this
    % function

    % the first point in the convex hull will be p0 which is the lowest
    % rightmost point
    stackTop = P(1);

    % now let's push the second point
    stackTop = stackTop.Push(P(2));

    % bottom two elements in this stack will not be removed
    i = 3;
    while i <= length(P)
        % top two points in the stack
        p1 = stackTop.prev;
        p2 = stackTop;

        if Left(p1, p2, P(i))
            stackTop = stackTop.Push(P(i));
        end
        i = i + 1;
    end
end
```
Now the main function will be,

```
function main

% first, let's get the points
x = [3,3,0,2,-2,-3,6,-3,-5,1,-3,4,5,-5,3,0,0,7];
y = [3,5,1,5,2,2,5,4,2,-1,-2,-2,2,1,1,-2,5,0,4];

figure
xlim([-6 8]);
ylim([-3 6]);
hold on
% let's fill the vertices array
for i = 1 : length(x)
    curPoint = Point2D(x(i),y(i));
    curPoint.draw('DrawHandle',gca,...
        'ColorMarkerStyle','r*','LineWidth',2);
    hold on
    text(curPoint.x+0.5,curPoint.y+0.5,num2str(i-1));
    P(i) = Vertex2D(i-1,curPoint);
end

% getting the lowest rightmost point in P and placing it in P(1)
P = FindLowest(P);

% sort the points with respect to P(1) using the counterclockwise angle.
P = quicksort(P,1,length(P));

for i = 1 : length(P)
    fprintf(' %d',P(i).vertexID);
end
fprintf('
');
P = markDeletion(P);
for i = 1 : length(P)
    fprintf(' %d',P(i).isDeleted);
end
fprintf('
');
% maintain only vertices which are not marked for deletion
P = Squash(P);
% call the Graham scan algorithm
```
stackTop = Graham(P);
% now let's visualize the outputs
while(1)
 curPoint = stackTop.point;
 curPoint.draw('DrawHandle',gca,...
 'ColorMarkerStyle','b:*','LineWidth',2);
 hold on
 pause(0.5);
 % termination condition
 if isempty(stackTop.prev)
 break
 end
 stackTop = stackTop.prev;
end

Task 1: Examine the preceding code using the given set of points which include all types of collinearities, then do the following:

(a) Tabulate the points after angular sorting each with its delete flag and vertex ID.
(b) Tabulate the points after apply the Squash function.
(c) Show the stack (with vertexID’s only) and the value of i at the top of the while loop.
(d) Visualize the intermediate results (each pop and push) throughout consecutive iterations.

Task 2: Graham Algorithm is mainly used to obtain the extreme points of a given set of points, with some minor changes in the given code we can obtain all points on the hull’s boundary with boundary traversal order, in this task you are required to analyze the given code and indicate these minor changes then develop another version of this code to obtain points on the hull, experiment your modifications using the given set of points and report any difficulties/special cases encountered during such modification, in particular when applied on the given set of point.

Task 3: All points collinear. What will the code output if all input points are collinear?

Task 4: Best case. How many iterations of the scan's while loop (in Graham Algorithm version B) occur if the input points are all already on the hull?

Task 5: Worst case. Construct a set of points for each n that causes the largest number of iterations of the while loop of the scan (in Graham Algorithm version B).

Task 6: Graham's algorithm has no obvious extension to three dimensions: It depends crucially on angular sorting, which has no direct counterpart in three dimensions. In the lecture notes we have discussed the Incremental Algorithm to compute convex hull, your task is to implement this algorithm using linked lists to represent points on the hull.
Task 7: Degenerate tangents. Modify the incremental algorithm as presented to output the correct hull when a tangent line from \(p \) includes an edge of \(Q \). The "correct" hull should not have three collinear vertices.

Task 8: Collinearities. Modify the incremental algorithm to work with sets of points that may include three or more collinear points, hint extend task 7.

Task 9: Optimal incremental algorithm. Presort the points by their \(x \) coordinate, so that \(p \notin Q \) at each step. Now try to arrange the search for tangent lines in such a manner that the total work over the life of the algorithm is \(O(n) \). This then provides an \(O(n \log n) \) algorithm.

Task 10: Write a report to summarize the theoretical background needed for this lab and your experimental results. Your report should begin with a cover page introducing the project title and group members. It is important to note that all figure axes should be labeled properly. You are required to submit your MATLAB codes (fully commented) with a readme file describing your files and how to use them in terms of input and output.

Good Luck