ECE620: Pattern Recognition & Machine Intelligence
(3 Credits; Prerequisites EE420 and Engineering Probability)

Description: Fundamentals of Statistical, Structural, and Neural Pattern Recognition Approaches: Parametric and Nonparametric Classification, Feature Extraction, Clustering, Self-organizing Nets for Pattern Recognition, and Formal Languages Representation. Current medical and industrial applications.

Grading: Homeworks (20%), Projects (40 %), and three Exams (40%). Total grade will be normalized to 100 points and the final grade will be assigned such that: $85 \leq A \leq 100$, $70 \leq B < 85$, and $60 \leq C < 70$.

Course Learning Objectives:
By the end of this class, students would:
1. Derive and implement Bayes Decision Theory.
3. Design Linear Classifiers for separable and non-separable patterns.

COURSE OUTLINE

<table>
<thead>
<tr>
<th>WEEKS</th>
<th>I. INTRODUCTION ..1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I.1 MATHEMATICAL FOUNDATION</td>
</tr>
<tr>
<td></td>
<td>II. BAYES DECISION THEORY ...1</td>
</tr>
<tr>
<td></td>
<td>II.1 Bayes Classifier for Continuous Case</td>
</tr>
<tr>
<td></td>
<td>II.2 The Gaussian Two-class classifier</td>
</tr>
<tr>
<td></td>
<td>II.3 Bayes Classifier for Discrete Case</td>
</tr>
<tr>
<td></td>
<td>II.4 Error Probability and Receiver Operating Characteristics</td>
</tr>
<tr>
<td></td>
<td>III. MAXIMUM-LIKELIHOOD AND BAYESIAN PARAMETER ESTIMATION....1</td>
</tr>
<tr>
<td></td>
<td>III.1 Maximum Likelihood Estimation</td>
</tr>
<tr>
<td></td>
<td>III.2 Application to Bayesian Classification</td>
</tr>
</tbody>
</table>
III.3 Learning the Mean of Gaussian Density Function

IV. NONPARAMETRIC TECHNIQUES ... 2
IV.1 Probability Density Estimation
IV.2 Parzen Windows Estimation
IV.3 k Nearest Neighbor Estimation
IV.4 Nearest Neighbor Rule
IV.5 k Nearest Neighbor Rule

V. LINEAR DISCRIMINANT FUNCTIONS ... 1
V.1 Linear Discriminant Functions and Decision Surfaces
V.2 The Two-Category Case
V.3 Generalized Linear Discriminant Functions
V.4 Relaxation Procedure
V.5 Minimum Square Error Procedure
V.6 Ho-Kashyap Procedure
V.6 Linear Programming Procedure

VI. UNSUPERVISED LEARNING & CLUSTERING 2
VI.1 Mixture Densities & Identifiability
VI.2 Maximum Likelihood Estimates
VI.3 Applications to Normal Mixtures
VI.4 Unsupervised Bayesian Learning
VI.5 Clustering Techniques & Criterion

VII. COMPUTER PROJECTS (FOR ECE 645)
VII.1 Simulation of Class Distributions
VII.2 Bayesian Classifier Design
VII.3 Nonparametric techniques
VII.4 Clustering