ECE 643: Introduction to Biocomputing

Project # 7: Model-Based Segmentation

(Issued Thursday 04/16/2009 – Due Thursday 04/23/2009)

1. For each of the following images
 I. “Lung.pgm” II. “Kidney.pgm”
 a. Compute the gray levels histogram,
 b. Using the EM that you implemented in a previous project, fit \(N \) Gaussians on this histogram,
 c. From the \(N \) Gaussians, estimate the marginal density of each class \(P(I_p|f_p) \), and compute the threshold between these densities,
 d. Obtain an initial segmentation using this threshold,
 e. If we fit a MGRF on the desired image \(f \) with the assumption that the Gibbs energy is identified by the 2nd order neighborhood system, the Pairwise interaction model is chosen and the potential function is selected to be:

\[
V(f_p) = \alpha f_p \\
V(f_p, f_q) = \begin{cases}
\beta & \text{if } f_p \neq f_q \\
0 & \text{otherwise}
\end{cases}
\]

\[
\alpha = 0, \quad \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta
\]

For a proper value \(\beta \), obtain the final segmentation by computing the Maximum-A-Posteriori estimate of \(f \) using the ICM algorithm,

f. Study the effect of the value of \(\beta \) on the final segmentation,

\[\text{g. (Extra credit) Repeat (e) using the simulated annealing algorithm.} \]

2. (Extra credit) Repeat 1 for the “rose.ppm” image.