Circular and Linear Convolution

1. Generate and plot a random signal \(x[n] \) of length \(N = 1024 \) having uniform distribution \([0:10]\).

2. Generate and plot a hamming window signal \(h[n] \) of length \(M = 256 \), where

\[
h[n] = \begin{cases}
0.54 - 0.46 \cos(2\pi n / M) & 0 \leq n \leq M \\
0 & \text{otherwise}
\end{cases}
\]

3. Write a function to implement a linear convolution of \(x[n] \) with \(h[n] \). Plot your results.

4. Obtain and plot the N-point Fourier Transform \(X[k] \) and \(H[k] \), \(N = 1024 \).

5. Calculate and plot \(Y[k] = X[k] H[k] \) and its inverse \(y[n] \). Compare your results with the ones obtain in step 3.

6. Modify step 4 and 5 to obtain the linear convolution using the Fourier transform.

7. Repeat steps 2 to 6 using

\[
h[n] = \begin{cases}
0.42 - 0.5 \cos(2\pi n / M) + 0.08 \cos(4\pi n / M) & 0 \leq n \leq M \\
0 & \text{otherwise}
\end{cases}
\]