1. Let \(\{X_i\}, i = 1, 2, \ldots, n \) be iid Rayleigh;

\[f_X(x) = \frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right); \quad x \geq 0. \]

Let \(S = \max \{ X_i \}, i = 1, 2, \ldots, n \)

\[E(S^2) = 2 \sigma^2 \sum_{k=1}^{n} k. \]

Proof

First, let's get the density function of the RV \(S \).

\[F_S(s) = P(S \leq s) \]

\[= P(X_1 \leq s, X_2 \leq s, \ldots, X_n \leq s) \]

\[= P(X_1 \leq s) \cdot P(X_2 \leq s) \ldots P(X_n \leq s) \]

\[\Rightarrow F_S(s) = \left(F_X(s) \right)^n; \quad X_i \text{ are iid} \quad (1) \]

Differentiating w.r.t. \(s \), we get

\[f_S(s) = n \left(F_X(s) \right)^{n-1} f_X(s). \quad (2) \]
Now, \(F_X(x) \triangleq P(X \leq x) \)

\[
= \int_{-\infty}^{x} f_X(x') \, dx' = \int_{-\infty}^{x} f_X(x) \, dx, \quad x \geq 0
\]

\[
= \int_{0}^{x} \frac{1}{\sqrt{2\pi}} e^{-x^2/2\sigma^2} \, dx
\]

\[
F_X(x) = 1 - e^{-x^2/2\sigma^2} \tag{3}
\]

\[
F_X(s) = 1 - e^{-s^2/2\sigma^2} \tag{4}
\]

Hence,

\[
f_S(s) = n \left[1 - e^{-s^2/2\sigma^2} \right] \frac{s}{\sigma^2} \tag{5}
\]

Now,

\[
E(s^2) \triangleq \int_{-\infty}^{\infty} s^2 f_S(s) \, ds
\]

\[
= \int_{0}^{\infty} \frac{n s^3}{\sigma^2} \left[1 - e^{-s^2/2\sigma^2} \right] \frac{s}{\sigma^2} \, ds
\]

\[
= \sum_{i=0}^{n-1} (n-1) \cdot (1 - e^{-s^2/2\sigma^2}) \tag{6}
\]

To simplify the integral, we note that

\[
(1 - e^{-s^2/2\sigma^2})^{-1} = \sum_{i=0}^{n-1} (n-1) \cdot (1 - e^{-s^2/2\sigma^2}) \tag{7}
\]
Therefore,

\[
E(s^2) = \frac{n}{\sigma^2} \sum_{r=0}^{n-1} \binom{n-1}{r} (-1)^r \int_0^\infty s^2 e^{-s^2/2\sigma^2} (r+1)^{-2} \, ds
\]

\[
= \frac{n}{\sigma^2} \sum_{r=0}^{n-1} \binom{n-1}{r} (-1)^r \frac{2\sigma^4}{(r+1)^2}
\]

\[
= 2\sigma^2 \sum_{J=1}^n \binom{n-1}{J-1} (-1)^{J-1} \frac{1}{J^2}
\]

\[
= 2\sigma^2 \sum_{J=1}^n \frac{(-1)^{J+1} \binom{n}{J}}{J}
\]

\[
= 2\sigma^2 \sum_{k=1}^{n} \frac{1}{k}
\]

From Tables of integrals, series and products:
2. \(X_n \xrightarrow{p} X \) if and only if \(\lim_{n \to \infty} E \left(\frac{|X_n - X|}{1 + |X_n - X|} \right) = 0 \)

Proof:

Let \(X_n - X = Y_n \).

\[
E \left(\frac{|Y_n|}{1 + |Y_n|} \right) = \int_{-\infty}^{\infty} \frac{|y_n|}{1 + |y_n|} f_{Y_n}(y_n) \, dy_n
\]

1. \(= \int_{|y_n| \geq \varepsilon} \frac{|y_n|}{1 + |y_n|} f_{Y_n}(y_n) \, dy_n + \int_{|y_n| < \varepsilon} \frac{|y_n|}{1 + |y_n|} f_{Y_n}(y_n) \, dy_n \)

2. \(\geq \int_{|y_n| \geq \varepsilon} \frac{\varepsilon}{1 + \varepsilon} f_{Y_n}(y_n) \, dy_n \)

\[
\geq \frac{\varepsilon}{1 + \varepsilon} \int_{|y_n| \geq \varepsilon} f_{Y_n}(y_n) \, dy_n
\]

3. \(\geq \frac{\varepsilon}{1 + \varepsilon} \cdot P(|Y_n| \geq \varepsilon) \)

4. \[
E \left(\frac{|Y_n|}{1 + |Y_n|} \right) \geq \frac{\varepsilon}{1 + \varepsilon} \cdot P(|Y_n| \geq \varepsilon)
\]
Also, from (3)
\[E\left(\frac{|Y_n|}{1+|Y_n|} \right) \leq \frac{3}{1+3} \int_{|Y_n| \geq 3} f_{Y_n}(y_n) \, dy_n + \frac{3}{1+3} \int_{|Y_n| < 3} f_{Y_n}(y_n) \, dy_n. \]
(check by choosing some values of \(n \in \mathbb{N} \).)

\[\leq P(|Y_n| \geq 3) + \frac{3}{1+3} P(|Y_n| < 3), \]
\[\text{for all } \varepsilon > 0 \]

\[\therefore \left\{ \begin{align*}
E\left(\frac{|Y_n|}{1+|Y_n|} \right) &\leq P(|Y_n| \geq 3) + \frac{3}{1+3} P(|Y_n| < 3) \quad (6) \\
&\leq P(|Y_n| \geq \varepsilon) + \frac{3}{1+3} \varepsilon \quad (9)
\end{align*} \right. \]

Equations 6 and 10 are the lower and upper bounds of the quantity in question.

Now let \(\lim_{n \to \infty} E\left(\frac{|Y_n|}{1+|Y_n|} \right) = 0 \) (i.e., assume that \(X_n \xrightarrow{m.s.} X \)).

Then, the RHS of (6) \(\to 0 \) as \(n \to \infty \);

i.e., \(\lim_{n \to \infty} P(|Y_n| \geq \varepsilon) = P(|X_n - X| \geq \varepsilon) = 0 \)
\[\Rightarrow X_n \xrightarrow{P} X. \]
Now let \(\lim_{n \to \infty} P(|Y_n| \geq \varepsilon) = 0 \) (i.e., assume that \(X_n \xrightarrow{p} X \).

From 10 by taking the limits of the two sides,

\[
\lim_{n \to \infty} \mathbb{E}\left(\frac{|Y_n|}{1+|Y_n|} \right) \leq \frac{\varepsilon}{1+\varepsilon} \quad \text{\(\therefore \)}
\]

But \(\varepsilon \) is an arbitrary quantity which we can select. Therefore, we can select \(\varepsilon \) to be very small number such that

\[
\lim_{n \to \infty} \mathbb{E}\left(\frac{|Y_n|}{1+|Y_n|} \right) \to 0.
\]

\[
\Rightarrow \lim_{n \to \infty} \mathbb{E}(|Y_n|) \to 0
\]

\(\text{i.e., } \lim_{n \to \infty} \mathbb{E}(|X_n - X|) \to 0 \)

\[
\Rightarrow X_n \xrightarrow{m.s} X.
\]

\(\text{Q.E.D.} \)
3. Given $z_x = z_y = z_z = 0$
$\sigma_x^2 = \sigma_y^2 = \sigma_z^2 = 1$.

$$r_xz = r_x y r_z - \sqrt{1 - r_x^2} \cdot \sqrt{1 - r_y^2} = r_y z$$

Proof

From notes, pp. 11-13, we stated that the correlation matrix R is nonnegative definite, i.e.

$$\begin{vmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{vmatrix} > 0,$$ \hspace{1cm} (1)

where $R_{ij} = E(X_i \cdot X_j)$

$$= C_{ij} \quad \text{since } z_i = 0 \quad \text{in our case}$$

$$\Delta = r_{ij} \cdot \sigma_i \cdot \sigma_j$$ \hspace{1cm} (2)

$$R = \begin{bmatrix} r_{xx} \sigma_x^2 & r_{xy} \sigma_x \sigma_y & r_{xz} \sigma_x \sigma_z \\ r_{yx} \sigma_y \sigma_x & r_{yy} \sigma_y^2 & r_{yz} \sigma_y \sigma_z \\ r_{zx} \sigma_z \sigma_x & r_{zy} \sigma_z \sigma_y & r_{zz} \sigma_z^2 \end{bmatrix}$$ \hspace{1cm} (3)
\[
R = \begin{bmatrix}
1 & r_{xy} & r_{xz} \\
r_{xy} & 1 & r_{yz} \\
r_{xz} & r_{yz} & 1
\end{bmatrix}
\]

\[\text{Note: } r_{xy} = r_{yy} = r_{zz} = 1\]

and, it's given that \(\sigma_x^2 = \sigma_y^2 = \sigma_z^2 = 1 \).

Now since the determinant of \(R \) is \(> 0 \)

\[(1 - r_{yz}^2) - r_{xy} (r_{xy} - r_{yz} r_{xz}) + r_{xz} (r_{xy} r_{yz} - r_{xz}) \geq 0 \]

\[1 - r_{yz}^2 - r_{xy} + 2 r_{xy} r_{yz} r_{xz} > r_{xz}^2 \]

Adding \(r_{xy}^2 \) and \(r_{yz}^2 \) to both sides

\[(1 - r_{xy}^2) (1 - r_{yz}^2) \geq (r_{xy} r_{yz} - r_{xz})^2 \]

Hence, \[r_{xy} r_{yz} - r_{xz} \leq \sqrt{1 - r_{xy}^2} \cdot \sqrt{1 - r_{yz}^2} \]

\[\Rightarrow \quad r_{xz} \geq r_{xy} r_{yz} - \sqrt{1 - r_{xy}^2 \cdot 1 - r_{yz}^2} \]
4. Let the distance in pace i be d_i. Hence, the total distance in 100 paces will be
$$ d = \sum_{i=1}^{100} d_i, \quad \text{(1)} $$
where d_i is i.i.d. with mean 0.97 and variance 0.01. Therefore,
$$ \bar{d} = 100 \bar{d} = 97 $$
$$ \sigma_d^2 = 100 \sigma^2 = 1 $$

Recall: If $Y = \sum_{i=1}^{N} x_i$ and x_i are i.i.d with mean μ_x and variance σ_x^2,
then
$$ \bar{Y} = 100 \mu_x $$
$$ \sigma_Y^2 = 100 \sigma_x^2. \quad (\text{shw!}) $$

Now, we need to calculate
$$ P(95 < d < 105). $$
$$ P(95 < d < 105) = P \left(\frac{95 - 2d}{\sigma_d} < \frac{d - \mu_d}{\sigma_d} < \frac{105 - 2d}{\sigma_d} \right) $$
\[P \left(-2 < d_n < 8 \right), \quad d_n \triangleq \frac{d - 2d}{\sigma_d} \]

Now, using the central limit theorem approximations, we can approximate the above probability as a Gaussian distribution,
that is,
\[d_n \triangleq \frac{d - 2d}{\sigma_d} \sim N \left(0, 1 \right) \]

Hence,
\[P \left(-2 < d_n < 8 \right) = G(8) - G(-2) \]
\[= G(8) - (1 - G(2)) \]
\[= G(8) + G(2) - 1 \]
\[\approx G(2) \]
\[= 0.9772 \]

Note: From the given table
\[G(x) \triangleq 1 \quad \text{for } x \geq 4 \]
\[G(y) \triangleq 0 \quad \text{for } y \leq -4 \]

So, we took \[G(8) \approx 1 \].
Table I Values of the standard normal distribution function

\[
\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du = P(Z \leq z)
\]

<table>
<thead>
<tr>
<th>z</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>.0013</td>
<td>.0010</td>
<td>.0007</td>
<td>.0005</td>
<td>.0003</td>
<td>.0002</td>
<td>.0001</td>
<td>.0001</td>
<td>.0000</td>
<td></td>
</tr>
<tr>
<td>-2.9</td>
<td>.0019</td>
<td>.0018</td>
<td>.0017</td>
<td>.0016</td>
<td>.0016</td>
<td>.0015</td>
<td>.0015</td>
<td>.0014</td>
<td>.0014</td>
<td></td>
</tr>
<tr>
<td>-2.8</td>
<td>.0026</td>
<td>.0025</td>
<td>.0024</td>
<td>.0023</td>
<td>.0023</td>
<td>.0022</td>
<td>.0021</td>
<td>.0020</td>
<td>.0020</td>
<td>.0019</td>
</tr>
<tr>
<td>-2.7</td>
<td>.0033</td>
<td>.0033</td>
<td>.0032</td>
<td>.0031</td>
<td>.0030</td>
<td>.0029</td>
<td>.0028</td>
<td>.0027</td>
<td>.0026</td>
<td></td>
</tr>
<tr>
<td>-2.6</td>
<td>.0047</td>
<td>.0045</td>
<td>.0044</td>
<td>.0043</td>
<td>.0041</td>
<td>.0039</td>
<td>.0039</td>
<td>.0038</td>
<td>.0037</td>
<td>.0036</td>
</tr>
<tr>
<td>-2.5</td>
<td>.0062</td>
<td>.0060</td>
<td>.0059</td>
<td>.0057</td>
<td>.0055</td>
<td>.0054</td>
<td>.0052</td>
<td>.0051</td>
<td>.0049</td>
<td>.0048</td>
</tr>
<tr>
<td>-2.4</td>
<td>.0078</td>
<td>.0076</td>
<td>.0075</td>
<td>.0073</td>
<td>.0071</td>
<td>.0069</td>
<td>.0068</td>
<td>.0066</td>
<td>.0064</td>
<td></td>
</tr>
<tr>
<td>-2.3</td>
<td>.0097</td>
<td>.0104</td>
<td>.0102</td>
<td>.0099</td>
<td>.0096</td>
<td>.0094</td>
<td>.0091</td>
<td>.0089</td>
<td>.0087</td>
<td>.0084</td>
</tr>
<tr>
<td>-2.2</td>
<td>.0139</td>
<td>.0136</td>
<td>.0132</td>
<td>.0129</td>
<td>.0126</td>
<td>.0122</td>
<td>.0119</td>
<td>.0116</td>
<td>.0113</td>
<td>.0110</td>
</tr>
<tr>
<td>-2.1</td>
<td>.0179</td>
<td>.0174</td>
<td>.0170</td>
<td>.0166</td>
<td>.0162</td>
<td>.0158</td>
<td>.0154</td>
<td>.0150</td>
<td>.0146</td>
<td>.0143</td>
</tr>
<tr>
<td>-2.0</td>
<td>.0228</td>
<td>.0222</td>
<td>.0217</td>
<td>.0212</td>
<td>.0207</td>
<td>.0202</td>
<td>.0197</td>
<td>.0192</td>
<td>.0188</td>
<td>.0183</td>
</tr>
<tr>
<td>-1.9</td>
<td>.0287</td>
<td>.0281</td>
<td>.0274</td>
<td>.0268</td>
<td>.0262</td>
<td>.0256</td>
<td>.0250</td>
<td>.0244</td>
<td>.0238</td>
<td>.0233</td>
</tr>
<tr>
<td>-1.8</td>
<td>.0359</td>
<td>.0352</td>
<td>.0344</td>
<td>.0336</td>
<td>.0329</td>
<td>.0322</td>
<td>.0314</td>
<td>.0307</td>
<td>.0300</td>
<td>.0294</td>
</tr>
<tr>
<td>-1.7</td>
<td>.0446</td>
<td>.0436</td>
<td>.0427</td>
<td>.0418</td>
<td>.0409</td>
<td>.0401</td>
<td>.0392</td>
<td>.0384</td>
<td>.0375</td>
<td>.0367</td>
</tr>
<tr>
<td>-1.6</td>
<td>.0548</td>
<td>.0537</td>
<td>.0526</td>
<td>.0516</td>
<td>.0505</td>
<td>.0495</td>
<td>.0485</td>
<td>.0475</td>
<td>.0465</td>
<td>.0455</td>
</tr>
<tr>
<td>-1.5</td>
<td>.0668</td>
<td>.0655</td>
<td>.0643</td>
<td>.0630</td>
<td>.0618</td>
<td>.0606</td>
<td>.0594</td>
<td>.0582</td>
<td>.0570</td>
<td>.0559</td>
</tr>
<tr>
<td>-1.4</td>
<td>.0808</td>
<td>.0793</td>
<td>.0778</td>
<td>.0764</td>
<td>.0749</td>
<td>.0735</td>
<td>.0722</td>
<td>.0708</td>
<td>.0694</td>
<td>.0681</td>
</tr>
<tr>
<td>-1.3</td>
<td>.0968</td>
<td>.0951</td>
<td>.0934</td>
<td>.0918</td>
<td>.0901</td>
<td>.0885</td>
<td>.0869</td>
<td>.0853</td>
<td>.0838</td>
<td>.0823</td>
</tr>
<tr>
<td>-1.2</td>
<td>.1131</td>
<td>.1131</td>
<td>.1131</td>
<td>.1093</td>
<td>.1075</td>
<td>.1056</td>
<td>.1038</td>
<td>.1020</td>
<td>.1003</td>
<td>.0985</td>
</tr>
<tr>
<td>-1.1</td>
<td>.1307</td>
<td>.1335</td>
<td>.1314</td>
<td>.1292</td>
<td>.1271</td>
<td>.1251</td>
<td>.1230</td>
<td>.1210</td>
<td>.1190</td>
<td>.1170</td>
</tr>
<tr>
<td>-1.0</td>
<td>.1507</td>
<td>.1562</td>
<td>.1539</td>
<td>.1515</td>
<td>.1492</td>
<td>.1469</td>
<td>.1446</td>
<td>.1423</td>
<td>.1401</td>
<td>.1379</td>
</tr>
<tr>
<td>-0.9</td>
<td>.1841</td>
<td>.1814</td>
<td>.1788</td>
<td>.1762</td>
<td>.1736</td>
<td>.1712</td>
<td>.1685</td>
<td>.1660</td>
<td>.1635</td>
<td>.1611</td>
</tr>
<tr>
<td>-0.7</td>
<td>.2420</td>
<td>.2389</td>
<td>.2358</td>
<td>.2327</td>
<td>.2297</td>
<td>.2266</td>
<td>.2236</td>
<td>.2206</td>
<td>.2177</td>
<td>.2148</td>
</tr>
<tr>
<td>-0.6</td>
<td>.2743</td>
<td>.2709</td>
<td>.2676</td>
<td>.2643</td>
<td>.2611</td>
<td>.2578</td>
<td>.2546</td>
<td>.2514</td>
<td>.2483</td>
<td>.2451</td>
</tr>
<tr>
<td>-0.5</td>
<td>.3085</td>
<td>.3050</td>
<td>.3015</td>
<td>.2981</td>
<td>.2946</td>
<td>.2912</td>
<td>.2877</td>
<td>.2843</td>
<td>.2810</td>
<td>.2776</td>
</tr>
<tr>
<td>-0.4</td>
<td>.3446</td>
<td>.3409</td>
<td>.3372</td>
<td>.3336</td>
<td>.3300</td>
<td>.3264</td>
<td>.3228</td>
<td>.3192</td>
<td>.3156</td>
<td>.3121</td>
</tr>
<tr>
<td>-0.3</td>
<td>.3821</td>
<td>.3783</td>
<td>.3745</td>
<td>.3707</td>
<td>.3669</td>
<td>.3632</td>
<td>.3594</td>
<td>.3557</td>
<td>.3520</td>
<td>.3483</td>
</tr>
<tr>
<td>-0.2</td>
<td>.4207</td>
<td>.4168</td>
<td>.4129</td>
<td>.4090</td>
<td>.4052</td>
<td>.4013</td>
<td>.3974</td>
<td>.3936</td>
<td>.3897</td>
<td>.3859</td>
</tr>
<tr>
<td>-0.1</td>
<td>.4602</td>
<td>.4562</td>
<td>.4522</td>
<td>.4483</td>
<td>.4443</td>
<td>.4404</td>
<td>.4364</td>
<td>.4325</td>
<td>.4286</td>
<td>.4247</td>
</tr>
<tr>
<td>0</td>
<td>.5000</td>
<td>.4960</td>
<td>.4920</td>
<td>.4880</td>
<td>.4840</td>
<td>.4801</td>
<td>.4761</td>
<td>.4721</td>
<td>.4681</td>
<td>.4641</td>
</tr>
</tbody>
</table>

Table I Values of the standard normal distribution function

<table>
<thead>
<tr>
<th>z</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0</td>
<td>.5000</td>
<td>.5040</td>
<td>.5080</td>
<td>.5120</td>
<td>.5160</td>
<td>.5199</td>
<td>.5239</td>
<td>.5279</td>
<td>.5319</td>
<td>.5359</td>
</tr>
<tr>
<td>.1</td>
<td>.5398</td>
<td>.5438</td>
<td>.5478</td>
<td>.5517</td>
<td>.5557</td>
<td>.5596</td>
<td>.5636</td>
<td>.5675</td>
<td>.5714</td>
<td>.5753</td>
</tr>
<tr>
<td>.2</td>
<td>.5793</td>
<td>.5832</td>
<td>.5871</td>
<td>.5910</td>
<td>.5948</td>
<td>.5987</td>
<td>.6026</td>
<td>.6064</td>
<td>.6103</td>
<td>.6141</td>
</tr>
<tr>
<td>.3</td>
<td>.6179</td>
<td>.6217</td>
<td>.6255</td>
<td>.6293</td>
<td>.6331</td>
<td>.6368</td>
<td>.6406</td>
<td>.6443</td>
<td>.6480</td>
<td>.6517</td>
</tr>
<tr>
<td>.4</td>
<td>.6554</td>
<td>.6591</td>
<td>.6628</td>
<td>.6664</td>
<td>.6700</td>
<td>.6736</td>
<td>.6772</td>
<td>.6808</td>
<td>.6844</td>
<td>.6879</td>
</tr>
<tr>
<td>.5</td>
<td>.6915</td>
<td>.6950</td>
<td>.6985</td>
<td>.7019</td>
<td>.7054</td>
<td>.7088</td>
<td>.7122</td>
<td>.7157</td>
<td>.7190</td>
<td>.7224</td>
</tr>
<tr>
<td>.6</td>
<td>.7257</td>
<td>.7291</td>
<td>.7324</td>
<td>.7357</td>
<td>.7389</td>
<td>.7422</td>
<td>.7454</td>
<td>.7486</td>
<td>.7517</td>
<td>.7549</td>
</tr>
<tr>
<td>.7</td>
<td>.7580</td>
<td>.7611</td>
<td>.7642</td>
<td>.7673</td>
<td>.7703</td>
<td>.7733</td>
<td>.7764</td>
<td>.7797</td>
<td>.7823</td>
<td>.7852</td>
</tr>
<tr>
<td>.8</td>
<td>.7881</td>
<td>.7910</td>
<td>.7939</td>
<td>.7967</td>
<td>.7995</td>
<td>.8023</td>
<td>.8051</td>
<td>.8078</td>
<td>.8106</td>
<td>.8133</td>
</tr>
<tr>
<td>.9</td>
<td>.8159</td>
<td>.8186</td>
<td>.8212</td>
<td>.8238</td>
<td>.8264</td>
<td>.8289</td>
<td>.8315</td>
<td>.8340</td>
<td>.8365</td>
<td>.8389</td>
</tr>
<tr>
<td>1.0</td>
<td>.8413</td>
<td>.8438</td>
<td>.8461</td>
<td>.8485</td>
<td>.8508</td>
<td>.8531</td>
<td>.8554</td>
<td>.8577</td>
<td>.8599</td>
<td>.8621</td>
</tr>
<tr>
<td>1.1</td>
<td>.8643</td>
<td>.8665</td>
<td>.8686</td>
<td>.8708</td>
<td>.8729</td>
<td>.8749</td>
<td>.8770</td>
<td>.8790</td>
<td>.8810</td>
<td>.8830</td>
</tr>
<tr>
<td>1.2</td>
<td>.8849</td>
<td>.8869</td>
<td>.8888</td>
<td>.8907</td>
<td>.8925</td>
<td>.8944</td>
<td>.8962</td>
<td>.8980</td>
<td>.8997</td>
<td>.9015</td>
</tr>
<tr>
<td>1.3</td>
<td>.9032</td>
<td>.9049</td>
<td>.9066</td>
<td>.9082</td>
<td>.9099</td>
<td>.9115</td>
<td>.9131</td>
<td>.9147</td>
<td>.9162</td>
<td>.9177</td>
</tr>
<tr>
<td>1.4</td>
<td>.9192</td>
<td>.9207</td>
<td>.9222</td>
<td>.9236</td>
<td>.9251</td>
<td>.9265</td>
<td>.9278</td>
<td>.9292</td>
<td>.9306</td>
<td>.9319</td>
</tr>
<tr>
<td>1.5</td>
<td>.9332</td>
<td>.9345</td>
<td>.9357</td>
<td>.9370</td>
<td>.9382</td>
<td>.9394</td>
<td>.9406</td>
<td>.9418</td>
<td>.9430</td>
<td>.9441</td>
</tr>
<tr>
<td>1.6</td>
<td>.9452</td>
<td>.9463</td>
<td>.9474</td>
<td>.9484</td>
<td>.9495</td>
<td>.9505</td>
<td>.9515</td>
<td>.9525</td>
<td>.9535</td>
<td>.9545</td>
</tr>
<tr>
<td>1.7</td>
<td>.9554</td>
<td>.9564</td>
<td>.9573</td>
<td>.9582</td>
<td>.9591</td>
<td>.9599</td>
<td>.9608</td>
<td>.9616</td>
<td>.9625</td>
<td>.9633</td>
</tr>
<tr>
<td>1.8</td>
<td>.9641</td>
<td>.9648</td>
<td>.9656</td>
<td>.9664</td>
<td>.9671</td>
<td>.9678</td>
<td>.9686</td>
<td>.9693</td>
<td>.9700</td>
<td>.9706</td>
</tr>
<tr>
<td>1.9</td>
<td>.9713</td>
<td>.9719</td>
<td>.9726</td>
<td>.9732</td>
<td>.9738</td>
<td>.9744</td>
<td>.9750</td>
<td>.9756</td>
<td>.9762</td>
<td>.9767</td>
</tr>
<tr>
<td>2.0</td>
<td>.9772</td>
<td>.9778</td>
<td>.9783</td>
<td>.9788</td>
<td>.9793</td>
<td>.9798</td>
<td>.9803</td>
<td>.9808</td>
<td>.9812</td>
<td>.9817</td>
</tr>
<tr>
<td>2.1</td>
<td>.9821</td>
<td>.9826</td>
<td>.9830</td>
<td>.9834</td>
<td>.9838</td>
<td>.9842</td>
<td>.9846</td>
<td>.9850</td>
<td>.9854</td>
<td>.9857</td>
</tr>
<tr>
<td>2.2</td>
<td>.9861</td>
<td>.9864</td>
<td>.9868</td>
<td>.9871</td>
<td>.9874</td>
<td>.9878</td>
<td>.9881</td>
<td>.9884</td>
<td>.9887</td>
<td>.9890</td>
</tr>
<tr>
<td>2.3</td>
<td>.9893</td>
<td>.9896</td>
<td>.9898</td>
<td>.9901</td>
<td>.9904</td>
<td>.9906</td>
<td>.9909</td>
<td>.9911</td>
<td>.9913</td>
<td>.9916</td>
</tr>
<tr>
<td>2.4</td>
<td>.9918</td>
<td>.9920</td>
<td>.9922</td>
<td>.9925</td>
<td>.9927</td>
<td>.9929</td>
<td>.9931</td>
<td>.9932</td>
<td>.9934</td>
<td>.9936</td>
</tr>
<tr>
<td>2.5</td>
<td>.9938</td>
<td>.9940</td>
<td>.9941</td>
<td>.9943</td>
<td>.9945</td>
<td>.9946</td>
<td>.9948</td>
<td>.9949</td>
<td>.9951</td>
<td>.9952</td>
</tr>
<tr>
<td>2.6</td>
<td>.9953</td>
<td>.9955</td>
<td>.9956</td>
<td>.9957</td>
<td>.9959</td>
<td>.9960</td>
<td>.9961</td>
<td>.9962</td>
<td>.9963</td>
<td>.9964</td>
</tr>
<tr>
<td>2.7</td>
<td>.9965</td>
<td>.9966</td>
<td>.9967</td>
<td>.9968</td>
<td>.9969</td>
<td>.9970</td>
<td>.9971</td>
<td>.9972</td>
<td>.9973</td>
<td>.9974</td>
</tr>
<tr>
<td>2.8</td>
<td>.9974</td>
<td>.9975</td>
<td>.9976</td>
<td>.9977</td>
<td>.9978</td>
<td>.9979</td>
<td>.9979</td>
<td>.9979</td>
<td>.9980</td>
<td>.9981</td>
</tr>
<tr>
<td>2.9</td>
<td>.9981</td>
<td>.9982</td>
<td>.9982</td>
<td>.9983</td>
<td>.9984</td>
<td>.9984</td>
<td>.9985</td>
<td>.9985</td>
<td>.9986</td>
<td>.9986</td>
</tr>
<tr>
<td>3.0</td>
<td>.9987</td>
<td>.9990</td>
<td>.9993</td>
<td>.9995</td>
<td>.9997</td>
<td>.9998</td>
<td>.9998</td>
<td>.9999</td>
<td>.9999</td>
<td>.9999</td>
</tr>
</tbody>
</table>

Note 1: If a normal variable X is not "standard," its values must be "standardized": $Z = (X - \mu)/\sigma$. That is, $P(X \leq z) = \Phi \left(\frac{z - \mu}{\sigma} \right)$.

Note 2: For "two-tail" probabilities, see Table Ia.

Note 3: For $z \geq 4$, $\Phi(z) = 1$ to four decimal places; for $z \leq -4$, $\Phi(z) = 0$ to four decimal places.

Note 4: The entries opposite $z = 3$ are for $z = 3.0, 3.1, 3.2, \text{etc.}$.